Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.099
Filtrar
1.
Dent Med Probl ; 61(1): 85-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441350

RESUMO

BACKGROUND: The dentin substrate can be modified by proteolytic agents, which may affect the bonding strength of adhesive systems to the treated dentin surface. Papain, a cysteine protease enzyme with antibacterial and anti-inflammatory properties, can be used for deproteinization of dentin. An alternative deproteinizing enzyme is bromelain. OBJECTIVES: This study aimed to evaluate the impact of deproteinization on the shear bond strength (SBS) of composite resin to deep dentin using different concentrations of bromelain and papain. MATERIAL AND METHODS: Sixty upper premolars were extracted and randomly divided into 5 groups (n = 12 per group). In all groups, the dentin surface was etched with 37% phosphoric acid. Group 1 did not receive any enzyme treatment, group 2 was treated with a 10% papain solution, group 3 was treated with a 15% papain solution, group 4 was treated with a 6% bromelain solution, and group 5 was treated with a 10% bromelain solution. After applying an etch-and-rinse adhesive system, the specimens were restored with composite resin and the SBS was measured. RESULTS: Statistically significant differences were found between groups 2 and 3 (10% papain and 15% papain, p = 0.004), groups 2 and 4 (10% papain and 6% bromelain, p = 0.017), groups 4 and 5 (6% bromelain and 10% bromelain, p = 0.021), and groups 3 and 5 (15% papain and 10% bromelain, p = 0.005). CONCLUSIONS: Deproteinization with papain and bromelain at different concentrations after acid etching did not affect the SBS of composite resin to deep dentin when using an etch-and-rinse adhesive system. However, the group deproteinized with 15% papain demonstrated a higher SBS than the group deproteinized with 10% papain, and the group deproteinized with 6% bromelain showed a higher SBS compared to the group deproteinized with 10% bromelain.


Assuntos
Bromelaínas , Papaína , Humanos , Antibacterianos , Bromelaínas/farmacologia , Resinas Compostas , Dentina , Papaína/farmacologia
2.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543039

RESUMO

Yak whey protein concentrates (YWPCs) have good functional properties, but there is still a gap in the study of their peptides. In this study, peptides were obtained by enzymatic hydrolysis, and the bioactivity of each ultrafiltration fraction was evaluated using an optimal process. YWPCs were isolated and purified from yak milk as the raw material. Alkaline protease, trypsin, and papain were used to hydrolyze YWPCs. The protease with the highest degree of hydrolysis (DH) and peptide concentration was selected as the most suitable enzyme. The effects of pH, temperature, time, and the enzyme-to-substrate ratio (E/S) on the DH and peptide concentration were investigated, and response surface methodology was utilized to optimize the hydrolysis process. The hydrolysate was separated using ultrafiltration membranes with molecular weight cut-offs of 10 kDa, 5 kDa, 3 kDa, and 1 kDa. The bioactivity of each ultrafiltration component was analyzed, including the inhibition rates of α-amylase and xanthine oxidase (XOD) activities and the scavenging rates of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radicals. The results indicated that alkaline protease was the best enzyme for hydrolyzing YWPCs. The peptide concentration in the YWPC hydrolysate was the highest (17.21 mg/mL) at a pH of 8 and a concentration of 7500 U/g, after 2.5 h at 62 °C. The enzymatic hydrolysate was ultrafiltered to yield four peptide fractions, of which the <1 kDa peptides exhibited the highest α-amylase inhibitory activity (22.06%), XOD inhibitory activity (17.15%), and ABTS cationic free radical scavenging rate (69.55%). This demonstrates the potential of YWPC hydrolyzed peptides for hypoglycemic, uric acid-lowering, and antioxidant applications, providing a theoretical basis for the high-value utilization of YWPCs.


Assuntos
Antioxidantes , Benzotiazóis , Sequestradores de Radicais Livres , Ácidos Sulfônicos , Animais , Bovinos , Hidrólise , Sequestradores de Radicais Livres/química , Proteínas do Soro do Leite , Antioxidantes/química , Peptídeos/química , Papaína/metabolismo , alfa-Amilases , Hidrolisados de Proteína/química
3.
Biosystems ; 238: 105194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513884

RESUMO

•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.5, with enhanced expression during the mycorrhizal process in Laccaria bicolor. •MiSSP13 and MiSSP16.5 show structural homology with the cysteine and aspartate protease inhibitor, cocaprin (CCP1). Through structural analysis, it was observed that MiSSP13 and MiSSP16.5 have an active site similar to that observed in CCP1. The protein-protein docking data showed that MiSSP13 and MiSSP16.5 interact with the papain and pepsin proteases at sites that are near to where CCP1 interacts with these same targets, suggesting a function as inhibitor of cysteine and aspartate proteases. The interaction of MiSSP13 with papain and MiSSP16.5 with pepsin was stronger than the interaction of CCP1 with these proteases, suggesting that the MiSSPs had a greater activity in inhibiting these classes of proteases. Based on the data supplied, a model is proposed for the function of MiSSPs 13 and 16.5 during the symbiosis establishment. Our findings, while derived from in silico analyses, enable us formulate intriguing hypothesis on the function of MiSSPs in ectomycorrhization, which will require experimental validation.


Assuntos
Laccaria , Micorrizas , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Papaína/metabolismo , Pepsina A/metabolismo , Ácido Aspártico/metabolismo , Cisteína/metabolismo , Simulação de Acoplamento Molecular , Simbiose , Inibidores de Proteases/metabolismo
4.
Biochem Biophys Res Commun ; 709: 149831, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38552552

RESUMO

Asthma and chronic obstructive pulmonary disease (COPD) are respiratory diseases associated with airway inflammation, which is the main pathogenesis. Although their causes and characteristics differ, in some cases, asthma and COPD may coexist in the same patient in a condition called asthma-COPD overlap (ACO). The prognosis of ACO is more unfavourable than those of asthma or COPD alone, without any treatment strategies demonstrating efficacy. Owing to its intricate spectrum of features, the detailed pathogenesis of how ACO exacerbates respiratory features remains unclear. In this study, we exposed papain-induced asthma model mice to tobacco smoke to establish an ACO mouse model, in which features of airway inflammation observed in both asthma and COPD were incorporated. This model exhibited distinctive mixed and corticosteroid-resistant airway inflammation and emphysematous changes that are characteristic of ACO. The novel mouse model established here is expected to significantly contribute to elucidating the mechanisms of the broad pathologies of ACO and identifying potential therapeutic targets.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Poluição por Fumaça de Tabaco , Humanos , Animais , Camundongos , Papaína , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Asma/tratamento farmacológico , Inflamação/complicações
5.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474509

RESUMO

We provide promising computational (in silico) data on phytochemicals (compounds 1-10) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CLPro) and papain-like proteases (PLPro) of SARS-CoV-2. Compounds 1-10 followed the Lipinski rules of five (RO5) and ADMET analysis, exhibiting drug-like characters. Non-covalent (reversible) docking of compounds 1-10 demonstrated their binding with the catalytic dyad (CYS145 and HIS41) of 3CLPro and catalytic triad (CYS111, HIS272, and ASP286) of PLPro. Moreover, the implementation of the covalent (irreversible) docking protocol revealed that only compounds 7, 8, and 9 possess covalent warheads, which allowed the formation of the covalent bond with the catalytic dyad (CYS145) in 3CLPro and the catalytic triad (CYS111) in PLPro. Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and radius of gyration (Rg) analysis from molecular dynamic (MD) simulations revealed that complexation between ligands (compounds 7, 8, and 9) and 3CLPro and PLPro was stable, and there was less deviation of ligands. Overall, the in silico data on the inherent properties of the above phytochemicals unravel the fact that they can act as reversible inhibitors for 3CLPro and PLPro. Moreover, compounds 7, 8, and 9 also showed their novel properties to inhibit dual targets by irreversible inhibition, indicating their effectiveness for possibly developing future drugs against SARS-CoV-2. Nonetheless, to confirm the theoretical findings here, the effectiveness of the above compounds as inhibitors of 3CLPro and PLPro warrants future investigations using suitable in vitro and in vivo tests.


Assuntos
COVID-19 , Plantas Medicinais , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , SARS-CoV-2 , Papaína , Simulação de Dinâmica Molecular , Compostos Fitoquímicos , Antivirais , Inibidores de Proteases
6.
J Contemp Dent Pract ; 25(1): 68-71, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514434

RESUMO

AIM: The aim of the present study was to assess the stain removal ability and color stability of three distinct dentifrices on artificially stained enamel surface. MATERIALS AND METHODS: This study included 75 intact, healthy premolars free of dental caries that were extracted during orthodontic therapy. The samples were allowed to dry for 6 hours after being submerged in the prepared tea solution for roughly 18 hours every day. Then this procedure was repeated for seven successive days. All samples were randomly divided into three experimental groups with 25 samples in each group. Group I: control dentifrice, group II: dentifrice containing hydrogen peroxide, group III: dentifrice containing papain and bromelain. A specially designed toothbrushing simulator was used to brush every sample in the relevant group. Using a spectrophotometer and a measurement program, color measurement was evaluated after staining process after 4 weeks and 8 weeks of teeth cleaning. Using a profilometer, the surface roughness values (Ra) were assessed. RESULTS: After 8 weeks of brushing of stained samples, the color stability was better in dentifrice containing hydrogen peroxide (1.14 ± 0.11) followed by dentifrice containing papain and bromelain (1.22 ± 0.08) and control group (1.30 ± 0.09). And after 8 weeks of brushing of stained samples, the surface roughness was more in dentifrice containing hydrogen peroxide (0.237 ± 0.02) followed by dentifrice containing papain and bromelain (0.229 ± 0.13) and control group (0.207 ± 0.05). CONCLUSION: The present study concluded that the dentifrice containing hydrogen peroxide showed a superior whitening effect on the stained enamel surface than dentifrice containing papain and bromelain and control dentifrice. CLINICAL SIGNIFICANCE: The development of various dentifrice products has been greatly aided by the increased demand for an improved esthetic appearance. Teeth's natural color and any external stains that could accumulate on the tooth surface combine to determine a tooth's color. Additionally, the use of whitening dental pastes to remove external stains has grown in favor. With the development of these whitening toothpastes, dentifrices' ability to lessen or eliminate extrinsic dental stains has increased. How to cite this article: Mishra D, Kamath DG, Alagla M, et al. Evaluation of Stain Removal Efficacy and Color Stability of Three Different Dentifrices on Artificially Stained Enamel Surface-An In Vitro Study. J Contemp Dent Pract 2024;25(1):68-71.


Assuntos
Cárie Dentária , Dentifrícios , Clareamento Dental , Descoloração de Dente , Humanos , Dentifrícios/uso terapêutico , Bromelaínas/uso terapêutico , Peróxido de Hidrogênio/uso terapêutico , Corantes , Descoloração de Dente/tratamento farmacológico , Papaína/uso terapêutico , Cárie Dentária/tratamento farmacológico , Escovação Dentária , Esmalte Dentário
7.
Biomed Pharmacother ; 173: 116378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492437

RESUMO

Several investigational nitric oxide donors were originally created to correct vascular endothelial dysfunction in cardiovascular diseases. These 48 compounds contain an urea-like moiety attached to the well-known NO donors isosorbide 2- and 5-mononitrate. CR-0305 and CR-0202 were synthesized and found to be nontoxic in the cell lines HMEC-1, A549/hACE2 and VeroE6. CR-0305 induced vasodilation in human coronary arteries ex vivo. Since NO can also have antiviral properties, a study of drug-protein interactions with SARS-CoV-2 was undertaken using in silico modeling. CR-0305 experimentally outperformed the other compounds, including CR-0202, in binding the catalytic site of SARS-CoV-2 papain-like protease (PLpro). PLpro is a primary target for therapeutic inhibition of SARS-CoV-2 as it mediates viral replication and modulates host innate immune responses. CR-0305 is predicted to sit firmly in the PLpro catalytic pocket as confirmed by molecular dynamics simulations, wherein stability of binding to the catalytic site of PLpro induces a conformational change in the BL2 loop to a more closed conformation as observed previously with GRL0617. Surface plasmon resonance was performed with CR-0305 and CR-0202 to characterize binding affinity to purified SARS-CoV-2 PLpro protein. CR-0305 and CR-0202 also inhibited SARS-CoV-2 infection compared to vehicle as measured by virus N protein staining with a specific antibody in A549-ACE2 and VeroE6 cells at 20 µM. CR-0305 is a coronary vasodilator that appears to bind to the catalytic site of the PLpro of SARS-CoV-2 while targeting delivery of antiviral NO to cells infected by SARS-CoV-2, suggesting multiple indications for future development.


Assuntos
COVID-19 , Peptídeo Hidrolases , Humanos , Papaína , SARS-CoV-2 , Doadores de Óxido Nítrico/farmacologia , Vasodilatadores , Antivirais/farmacologia , Inibidores de Proteases , Simulação de Acoplamento Molecular
8.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 217-226, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430019

RESUMO

Osteoarthritis is a prevalent chronic disease. One of its primary pathological processes involves the degeneration of articular cartilage. Platelet-rich plasma (PRP) contains cytokines and growth factors that can stimulate the repair and regeneration of articular cartilage tissues. PRP may also slow the progression of osteoarthritis. The purpose of this experiment is to compare the efficacy of Leukocyte poor (LP) - PRP and Leukocyte rich (LR) - PRP in treating rabbit osteoarthritis and to investigate their mechanisms of action. Analyzing the impact of leukocytes on PRP therapeutic effectiveness will provide a valuable clinical reference for the choice of which PRP is better for the treatment of osteoarthritis. A rabbit osteoarthritis model was established by injecting papain into the knee joint cavity, and LP-PRP and LR-PRP were prepared through different centrifugation methods for injection into the knee joint cavity. Eight weeks after injection, rabbit knee cartilage specimens were observed for gross changes, HE staining, senna O-solid green staining, and immunohistochemistry of type II collagen and were quantitatively compared using Pelletier's score, Mankin's pathology score, and ImageJ image processing software. Injection of papain into the knee joint cavity successfully established a rabbit model of osteoarthritis. All three evaluation indexes differed significantly from those of the blank group (P<0.05). LP-PRP and LR-PRP exhibited therapeutic effects when compared with the model group. The two PRP groups had similar gross tissue appearance and pathology (P>0.05). The LR-PRP group had higher collagen type-II expression (P < 0.05) than the LP-PRP group. Both LP-PRP and LR-PRP proved therapeutic for the rabbit papain osteoarthritis model. The difference in leukocyte content between the two groups did not yield different cartilage morphology or other factors by 8 weeks posttreatment. LR-PRP displayed the ability to release more factors relevant to the metabolism of type II collagen than LP-PRP, enabling the preservation of into cartilage collagen content of type II collagen and delaying osteoarthritis progression.


Assuntos
Cartilagem Articular , Osteoartrite , Plasma Rico em Plaquetas , Animais , Coelhos , Colágeno Tipo II/metabolismo , Papaína/uso terapêutico , Papaína/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Leucócitos/metabolismo
9.
J Food Sci ; 89(4): 2277-2291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488738

RESUMO

Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose. The optimized proteolysis conditions calculated from the result of response surface methodology for two-step hydrolysis were 0.30% (wenzyme/wmeat) for papain with a hydrolysis time of 3.5 h and 0.18% (wenzyme/wmeat) for flavourzyme with a hydrolysis time of 2.8 h. The enzymatic hydrolysate (EH) showed a binding capacity of 63.8 ± 1.8 mg calcium/g protein. Ethanol separation for EH improved the capacity up to a higher value of 68.6 ± 0.6 mg calcium/g protein with a high association constant of 420 M-1 (25°C) indicating high stability. The separated fraction with a higher amount of Glu, Asp, Lys, and Arg had higher calcium-binding capacity, which was related to the number of ─COOH and ─NH2 groups in peptide side chains according to the result from amino acid analysis and Fourier transform infrared spectroscopy. Two-step enzymatic hydrolysis and ethanol separation were an efficient combination to produce peptide mixtures derived from SHM with high calcium-binding capacity. The high percentage of hydrophilic amino acids in the separated fraction was concluded to increase calcium-binding capacity. This work provides foundations for increasing spent hen utilization and developing calcium peptide chelates based on underutilized meat.


Assuntos
Cálcio , Galinhas , Animais , Feminino , Cálcio/metabolismo , Galinhas/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Hidrólise , Papaína/química , Aminoácidos , Cálcio da Dieta/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Carne , Etanol
10.
J Pharm Biomed Anal ; 243: 116098, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493753

RESUMO

Antibody-drug conjugates (ADCs) are a heterogeneous mixture of conjugated species with varied drug loadings. Depending on conjugation sites, linkers and drugs can exhibit different stability as influenced by the solvent-accessibility and local charge, resulting in different ADC efficacy, pharmacokinetics, and toxicity. Conjugation site analysis is critical for ADC structural characterization to assure product quality and consistency. It enables early conjugation studies at site-specific levels, confirms the absence of unexpected products to support conjugation process development, and aids in ensuring lot-to-lot consistency for comparability studies. Peptide mapping using liquid chromatography-tandem mass spectrometry is the industry standard method for analyzing conjugation sites. However, some concerns remain for this approach as the large and hydrophobic drug moieties often result in poor MS/MS fragmentation quality and impede the identification of conjugation sites. Additionally, the ionization discrepancy between conjugated and unconjugated peptides can lead to a relatively large bias for site occupancy calculation. In this work, we present a simple drug deconjugation-assisted peptide mapping method to identify and quantify the drug conjugation for ADCs with protease-cleavable linkers. Papain-based drug deconjugation was used to remove the highly hydrophobic drug moiety, which significantly improved the quantitation accuracy of conjugation level and the fragmentation quality. Sample preparation conditions were optimized to avoid introducing artificial modifications, allowing the tracking of initial sample status and subsequent changes of quality attributes during process development and stability assessment. This method was applied to analyze thermally-stressed ADC samples to monitor changes of site-specific conjugation levels, DAR, succinimide hydrolysis of the linker, and various PTMs. We believe this is an effective and straightforward tool for conjugation site analysis while simultaneously monitoring multiple quality attributes for ADCs with protease-cleavable linkers.


Assuntos
Imunoconjugados , Imunoconjugados/química , Cromatografia Líquida/métodos , 60705 , Espectrometria de Massas em Tandem , Mapeamento de Peptídeos , Papaína
11.
PLoS Pathog ; 20(3): e1012100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527094

RESUMO

The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15. We identified several mutations that strongly reduced DUB activity of PLpro, without affecting viral polyprotein processing. In contrast, mutations that abrogated deISGylating activity also hampered viral polyprotein processing and when introduced into the virus these mutants were not viable. SARS-CoV-2 mutants exhibiting reduced DUB activity elicited a stronger interferon response in human lung cells. In a mouse model of severe disease, disruption of PLpro DUB activity did not affect lethality, virus replication, or innate immune responses in the lungs. This suggests that the DUB activity of SARS-CoV-2 PLpro is dispensable for virus replication and does not affect innate immune responses in vivo. Interestingly, the DUB mutant of SARS-CoV replicated to slightly lower titers in mice and elicited a diminished immune response early in infection, although lethality was unaffected. We previously showed that a MERS-CoV mutant deficient in DUB and deISGylating activity was strongly attenuated in mice. Here, we demonstrate that the role of PLpro DUB activity during infection can vary considerably between highly pathogenic coronaviruses. Therefore, careful considerations should be taken when developing pan-coronavirus antiviral strategies targeting PLpro.


Assuntos
COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Animais , Camundongos , Proteases Semelhantes à Papaína de Coronavírus/genética , SARS-CoV-2/metabolismo , Imunidade Inata , Papaína/genética , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Replicação Viral , Poliproteínas
12.
Int J Biol Macromol ; 262(Pt 2): 130040, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346618

RESUMO

The leather industry poses a significant environmental problem through the extensive discharge of trimming waste, primarily composed of skin matrix rich in proteins. Developing a green approach for utilizing this waste can contribute to the sustainable recovery of proteins, transforming them into valuable bioresources. This study introduces an environmentally friendly and economically viable approach to extract collagen from tannery raw trimming waste using papain enzyme-derived from papaya leaves. The research involved extensive assessments and trials to optimize the enzymatic hydrolysis process. The highest collagen recovery was achieved by hydrolyzing 5 % (w/v) delimed powder with 4 % (w/v) crude papain enzyme from papaya leaf powder, maintaining it at 60 °C for 6 h and at pH 5. Collagen extraction from raw trimming waste using acetic acid was also performed, with the optimized papain enzyme-based hydrolysis process resulting in approximately 91 % yield, while conventional acetic acid method yielded approximately 84 %. To evaluate the performance of the enzymatic hydrolysis process in comparison to acid hydrolysis and hydrothermal hydrolysis, an integrated MW-TOPSIS framework was proposed. This framework determined that enzymatic hydrolysis achieved the highest closeness coefficient value (Ri = 0.40), indicating its superiority as the preferred alternative among the tested methods.


Assuntos
Colágeno , Papaína , Pós , Hidrólise , Acetatos
13.
Sud Med Ekspert ; 67(1): 34-39, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38353013

RESUMO

OBJECTIVE: To develop the method of biological fluids' sample processing and mebeverine detection to exclude false results' receiving when diagnosing drug intoxication. MATERIAL AND METHODS: The study was carried out using «Mebeverine¼ (NJCO «North star¼, Russia) medicine and hydrolysis by enzymes, namely papain, chymotrypsin, trypsin, chymopsin and hyaluronidase, was applied for sample processing. The extractions were analyzed by methods of HPLC-MS/MS on Nexera XR modular liquid chromatograph with LCMS-8050 (Shimadzu) tandem mass spectrometer and GC-MS on gas chromatograph connected with QP-2020 (Shimadzu, Japanese) mono quadrupole mass spectrometer. RESULTS AND CONCLUSION: It has been revealed that using selective method of sample processing, which consists of aqueous phase extraction at pH=2-4 and enzymatic hydrolysis by papain and hyaluronidase during isolation from blood, is required to detect mebeverine in biological liquids. It has been proven that the native mebeverine is hydrolyzed to veratric (3.4-dimethoxybenzoic) acid and mebeverine alcohol at alkalotic pH value of medium. It has been shown that mebeverine extraction is necessary to study using HPLC-MS/MS, which will allow to avoid the native mebeverine degradation in chromatograph injector as with GC-MS method analysis.


Assuntos
Papaína , Fenetilaminas , Espectrometria de Massas em Tandem , Hialuronoglucosaminidase , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos
14.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338437

RESUMO

This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.


Assuntos
Bombyx , Maclura , Animais , Humanos , Hidrólise , Bombyx/metabolismo , Papaína/metabolismo , Frutas/metabolismo , Pós , Peptídeo Hidrolases/metabolismo , Proteínas do Soro do Leite , Proteínas de Soja , Subtilisinas/metabolismo , Etanol
15.
Appl Microbiol Biotechnol ; 108(1): 223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376614

RESUMO

Pork backfat (PB) contains excessive saturated fatty acids (SFAs), but lacks polyunsaturated fatty acids (PUFAs). Excessive SFAs can be used as a substrate for the growth of certain microorganisms that convert them into PUFAs and monounsaturated fatty acids (MUFAs), and the added value of PB can be enhanced. In this study, Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189 were co-cultured for conversion of PB into fermented pork backfat (FPB) with high level of PUFAs. Our results showed that the content of γ-linolenic acid (GLA) and linoleic acid (LA) in the surface of FPB reached 9.04 ± 0.14 mg/g and 107.31 ± 5.16 mg/g for 7-day fermentation, respectively. To convert the internal SFAs of PB, ultrasound combined with papain was used to promote the penetrative growth of M. circinelloides into the internal PB, and the GLA level in the third layer of fat reached 2.58 ± 0.31 mg/g FPB. The internal growth of M. circinelloides in PB was promoted by adjusting the oxygen rate and ventilation rate through the wind velocity sensor. When the oxygen rate is 2 m/s and the ventilation rate is 18 m3/h, the GLA level in the third layer of fat reached 4.13 ± 1.01 mg/g FPB. To further improve the level of PUFAs in PB, FPB was produced by M. circinelloides at 18 °C. The GLA content on the surface of FPB reached 15.73 ± 1.13 mg/g FPB, and the GLA yield in the second and third layers of fat reached 8.68 ± 1.77 mg/g FPB and 6.13 ± 1.28 mg/g FPB, the LA yield in the second and third layers of fat reached 105.45 ± 5.01 mg/g FPB and 98.46 ± 4.14 mg/g FPB, respectively. These results suggested that excessive SFAs in PB can be converted into PUFAs and provided a new technique for improving PUFAs in FPB. KEY POINTS: • This article achieved the conversion of PUFAs in pork backfat by Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189. • This article solved the internal growth of M. circinelloides CBS277.49 in pork backfat by ultrasound combined with papain. • This article proposed an innovative of promoting the internal growth of M. circinelloides and increasing the PUFAs production by oxygen ventilation in pork backfat.


Assuntos
Mucor , Carne de Porco , Carne Vermelha , Suínos , Animais , Papaína , Ácidos Graxos Insaturados , Ácido Linoleico , Oxigênio
16.
Food Chem ; 442: 138428, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241997

RESUMO

The bitterness of soy protein isolate hydrolysates prepared using five proteases at varying degree of hydrolysis (DH) and its relation to physicochemical properties, i.e., surface hydrophobicity (H0), relative hydrophobicity (RH), and molecular weight (MW), were studied and developed for predictive modelling using machine learning. Bitter scores were collected from sensory analysis and assigned as the target, while the physicochemical properties were assigned as the features. The modelling involved data pre-processing with local outlier factor; model development with support vector machine, linear regression, adaptive boosting, and K-nearest neighbors algorithms; and performance evaluation by 10-fold stratified cross-validation. The results indicated that alcalase hydrolysates were the most bitter, followed by protamex, flavorzyme, papain, and bromelain. Distinctive correlation results were found among the physicochemical properties, influenced by the disparity of each protease. Among the features, the combination of RH-MW fitted various classification models and resulted in the best prediction performance.


Assuntos
Proteínas de Soja , Paladar , Hidrólise , Proteínas de Soja/química , Peptídeo Hidrolases/metabolismo , Papaína/química , Hidrolisados de Proteína/química
17.
J Pharm Sci ; 113(2): 427-433, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38008178

RESUMO

Ideally, the dressings used in the clinic have characteristics that help the wound closure process. Among several factors that affect the success of this healing process, there is debridement. It manages the wound bed components and the re-epithelialization process. Still, the property of debridement is not generally associated with dressings. Here, we show a chemically modified bacterial cellulose film conjugated to a proteolytic enzyme, papain, as a dressing with debridement properties. Bacterial cellulose films were reacted with a spacer derived from succinic acid and finally had this enzyme covalently immobilized in its structure by an amide bond. FT-IR and UV-vis showed bands typically of bioconjugated polymer. Enzymatic immobilization was very effective under the conditions applied with high yield (33% w/w), and these remained activated after the coupling reaction. The bacterial cellulose film with the enzyme papain attached to it was also very compatible with fibroblast cells, suggesting that it could be a promising wound dressing material for future research.


Assuntos
Celulose , Papaína , Celulose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização , Bandagens
18.
Eur J Protistol ; 92: 126033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088016

RESUMO

Tetrahymena thermophila is a promising host for recombinant protein production, but its utilization in biotechnology is mostly limited due to the presence of intracellular and extracellular papain-family cysteine proteases (PFCPs). In this study, we employed bioinformatics approaches to investigate the T. thermophila PFCP genes and their encoded proteases (TtPFCPs), the most prominent protease family in the genome. Results from the multiple sequence alignment, protein modeling, and conserved motif analyses revealed that all TtPFCPs showed considerably high homology with mammalian cysteine cathepsins and contained conserved amino acid motifs. The total of 121 TtPFCP-encoding genes, 14 of which were classified as non-peptidase homologs, were found. Remaining 107 true TtPFCPs were divided into four distinct subgroups depending on their homology with mammalian lysosomal cathepsins: cathepsin L-like (TtCATLs), cathepsin B-like (TtCATBs), cathepsin C-like (TtCATCs), and cathepsin X-like (TtCATXs) PFCPs. The majority of true TtPFCPs (96 out of the total) were in TtCATL-like peptidase subgroup. Both phylogenetic and chromosomal localization analyses of TtPFCPs supported the hypothesis that TtPFCPs likely evolved through tandem gene duplication events and predominantly accumulated on micronuclear chromosome 5. Additionally, more than half of the identified TtPFCP genes are expressed in considerably low quantities compared to the rest of the TtPFCP genes, which are expressed at a higher level. However, their expression patterns fluctuate based on the stage of the life cycle. In conclusion, this study provides the first comprehensive in-silico analysis of TtPFCP genes and encoded proteases. The results would help designing an effective strategy for protease knockout mutant cell lines to discover biological function and to improve the recombinant protein production in T. thermophila.


Assuntos
Papaína , Tetrahymena thermophila , Animais , Papaína/genética , Tetrahymena thermophila/genética , Sequência de Bases , Sequência de Aminoácidos , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Mamíferos/genética
19.
Eur J Med Chem ; 264: 116011, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065031

RESUMO

The COVID-19 pandemic is caused by SARS-CoV-2, an RNA virus with high transmissibility and mutation rate. Given the paucity of orally bioavailable antiviral drugs to combat SARS-CoV-2 infection, there is a critical need for additional antivirals with alternative mechanisms of action. Papain-like protease (PLpro) is one of the two SARS-CoV-2 encoded viral cysteine proteases essential for viral replication. PLpro cleaves at three sites of the viral polyproteins. In addition, PLpro antagonizes the host immune response upon viral infection by cleaving ISG15 and ubiquitin from host proteins. Therefore, PLpro is a validated antiviral drug target. In this study, we report the X-ray crystal structures of papain-like protease (PLpro) with two potent inhibitors, Jun9722 and Jun9843. Subsequently, we designed and synthesized several series of analogs to explore the structure-activity relationship, which led to the discovery of PLpro inhibitors with potent enzymatic inhibitory activity and antiviral activity against SARS-CoV-2. Together, the lead compounds are promising drug candidates for further development.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2/metabolismo , Pandemias , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
20.
Int J Biol Macromol ; 258(Pt 1): 128812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114011

RESUMO

The highly infectious respiratory illness 'COVID-19' was caused by SARS-CoV-2 and is responsible for millions of deaths. SARS-single-stranded viral RNA genome encodes several structural and nonstructural proteins, including papain-like protease (PLpro), which is essential for viral replication and immune evasion and serve as a potential therapeutic target. Multiple computational techniques were used to search the natural compounds that may block the protease and deubiquitinase activities of PLpro. Five compounds showed strong interactions and binding energy (ranges between -8.18 to -8.69 Kcal/mol) in our in-silico studies. Interestingly, those molecules strongly bind in the PLpro active site and form a stable complex, as shown by microscale molecular dynamic simulations (MD). The dynamic movements indicate that PLpro acquires closed conformation by the attachment of these molecules, thereby changing its normal function. In the in-vitro evaluation, compound COMP4 showed the most potent inhibitory potential for PLpro (protease activity: 2.24 ± 0.17 µM and deubiquitinase activity: 1.43 ± 0.14 µM), followed by COMP1, 2, 3, and 5. Furthermore, the cytotoxic effect of COMP1-COMP5 on a human BJ cell line revealed that these compounds demonstrate negligible cytotoxicity at a dosage of 30 µM. The results suggest that these entities bear therapeutic efficacy for SARS-CoV-2 PLpro.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Papaína/química , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Produtos Biológicos/farmacologia , Enzimas Desubiquitinantes , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...